为了体现标准的科学性、严肃性,建议有关标准尽快将金属材料的"屈服点"指标修改为上屈服强度或下屈服强度指标,以利于使用标准的各方正确测量金属材料的力学性能,不至于产生误解。
许多金属材料的国家标准,例如GB/T699-1999《优质碳素结构钢》、GB/T1591-1994《低合金高强度结构钢》,都规定了金属材料的力学性能指标"屈服点"的限值,并规定相应的试验方法标准为GB/T228-1987《金属拉伸试验方法》。但在GB/T228的现行版本GB/T228-2002《金属材料 室温拉伸试验方法》中却找不到关于"屈服点"的试验方法,与之相应的是上屈服强度和下屈服强度的试验方法。
材料的受力变形分为弹性变形(外力撤销可以恢复原来形状)和塑性变形(外力撤销不能恢复原来形状,形状已发生变化).当所受应力达到一个值后,塑性应变急剧增加,力伸长曲线图中曲线出现一个波动的小平台,这种现象称为屈服。这一阶段的最大、最小应力分别称为上屈服强度和下屈服强度。由于下屈服强度的数值较为稳定,因此常以它作为材料抗力的指标。
在GB/T228-1987《金属拉伸试验方法》中,屈服点(σs)的定义是:呈现屈服现象的金属材料,试样在试验过程中力不增加(保持恒定)仍能继续伸长时的应力。但目前GB/T228-1987已被GB/T228-2002所代替。在GB/T228-2002《金属材料 室温拉伸试验方法》中,已找不到屈服点的定义,与之相应的是"屈服强度",其定义是:当金属材料呈现屈服现象时,在实验期间达到塑性变形发生而力不增加的应力点,应区分上屈服强度和下屈服强度。上屈服强度(ReH)的定义是:试样发生屈服而力首次下降前的最高应力;下屈服强度(ReL)的定义是:在屈服期间,不计初始瞬时效应时的最低应力。并给出了相应的试验方法。在日常的试验过程中往往会得到上屈服强度和下屈服强度,究竟以哪一个指标为标准来判定材料的"屈服点"是否合格,找不到相应的依据,同时以屈服强度指标来判定屈服点指标也显得极不科学严谨。
鉴于此,建议有关标准尽快将金属材料的"屈服点"指标修改为上屈服强度或下屈服强度指标,以利于使用标准的各方正确测量金属材料的力学性能,不至于产生误解,体现标准的科学性、严肃性。